

GREENCAM for tomorrow

DESIGNING BIOCATALYSTS BASED ON ENZYMES CO-IMMOBILIZATION WITH APPLICATION FOR CASCADE REACTIONS

Experimental report (I)

MASTER: CHEMISTRY OF ADVANCED MATERIALS

STUDENT: MARIA CRISTINA GHEŢU

COORDINATOR: ASSOC PROF. DR. MĂDĂLINA SĂNDULESCU

OUTLINE

Introduction

We propose a bienzymatic cascade system based on:

- Monoterpenoid epoxidation indirectly biocatalyzed by lipase from Aspergillus niger
- Epoxide hydrolysis directly biocatalyzed by hydrolase Re-LEH

In this experimental report, we present our results for:

Analysis of reaction mixture

 Testing two substrates for the developed process Optimization of H₂O₂
 concentration

Methods of analysis

A sample contains:

- 1.6 M octanoic acid
- 1.6 M substrate
- 0.1 M PBS (pH 8)
- 4.39% v/v lipase from Aspergillus niger
- 2.81% v/v hydrolase Re-LEH
- $> 0.44 \text{ mM H}_2\text{O}_2$
- contains: NaCl, KCl, Na $_2$ HPO $_3$, K $_2$ HPO $_3$ in water pH adjusted with NaOH
- is used to maintain a constant volume among all samples

GC-FID (flame ionization):

- Requsted the acetylation step for analysis
- Enantioseparation

Process enantioselectivity

Extraction:

• 1:1 volume ratio in ethyl acetate or n-pentane

Agitation at room temperature (30 min)

Acetylation:

- •100 µL sample
- •150 µL pyridine
- •66 µL acetic anhydride

24 h 25°C 1000 rpm (Thermoshaker)

Masks unreacted substrate

Pre-treatment	Unreacted α - phellandrene (mols/L)
Extraction	19.00 x 10 ⁻²
Extraction +acetylation	6.54 X 10 ⁻²

Sample analysis:

Gas chromatography

GC-MS (mass spectrometer):

24 h

25°C

1000 rpm

(Thermoshaker)

- Does not need the acetylation step
- Reverse phase separation

Values obtained from interpolation on calibration curve

Substrate conversion

Methods of analysis

Calibration curves:

 For a proper determination of substrate and interested product in the reacted mixture

- 8 samples
- Starting with around 3.3 M the concentrations are halved till 0.05 M
- The final sample has 0 M
- Solvents: n-pentane and ethyl acetate

Acetylation:

- •100 µL sample
- •150 µL pyridine
- •66 µL acetic anhydride

24 h 25°C 1000 rpm (Thermoshaker)

GC-MS:

 More sensible in changes in substrate concentration

GC-FID:

Can distinguish between R and S isomers of resulting diols

ethyl acetate

All 3 calibration curves have a correlation coefficient close to 1

Good linearity

24 h 25°C

1000 rpm

(Thermoshaker)

- ✓ Low polarity
- ✓ Less volatile

Sample:

- 1.60 M octanoic acid
- 1.6 M α-phellandrene
- PBS pH 8
- 4.39% (v/v) lipase Aspergillus niger
- 2.81% (v/v) hydrolase Re-LEH
- $0.44 \text{ mM H}_2\text{O}_2$

Extraction:

- 1:1 volume ratio in ethyl acetate or n-pentane
- ✓ Non-polar → better for extracting the non-polar substrate
- X Highly volatile

Agitation at room temperature (30 min)

GC-MS

•	The difference between the
	determined concentrations is low

The conversion is not affected substantially

Ethyl acetate

Extraction	Unreacted α-	Conversion	
solvent	phellandrene	(%)	
(mols/L)			
Ethyl acetate	1.25×10 ⁻¹	89	
n-pentane	1.67×10 ⁻¹	90	

Testing two substrates for the developed process

2 samples:

- 1.60 M octanoic acid
- 1.6 M α-phellandrene or 1.59 M
 (+)-limonene
- PBS pH 8
- 4.39% (v/v) lipase Aspergillus niger
- 2.81% (v/v) hydrolase Re-LEH
- $0.44 \text{ mM H}_2\text{O}_2$

- Extraction (ethyl acetate)
- Acetylation
- GC-FID

The conversion of α -phellandrene is influenced by the reaction environment

The difference in selectivity is not reflected in the amount obtained

p-cymene is detected for both cases

Enantiomeric excess around 90 % in both cases

Process performance	α-phellandrene	(+)-limonene
Conversion (%)	87	62
Selectivity for epoxide (%)	0.1	2.0
Epoxide (mols/L)	1.82×10 ⁻²	2.37×10 ⁻²
Selectivity for p-cymene (%)	17	27
Selectivity for diols (%)	83	71
Diols (mols/L)	1.25	0.75
Enantiomeric excess (%)	91	87

Effect of H_2O_2 on the bienzymatic process

• Maximum conversion: 87% for $0.44 \text{ mM H}_2\text{O}_2$

α-phellandrene

• The conversion increases together with the concentration of hydrogen peroxide

Better transformation of phellandrene compared with limonene!

Effect of H₂O₂ on the bienzymatic process

$0.44 \text{ mM H}_2\text{O}_2$

- Presence of the epoxide
- the highest diol selectivity (83%)
- the lowest p-cymene selectivity (17%)

- Low selectivity for p-cymene and epoxide intermediates
- Above 70% selectivity for diols

- Epoxide selectivity decreases together with the concentration of H₂O₂
- Selectivity for p-cymene between 25 – 30%
- Diol selectivity around 75%

Effect of H₂O₂ on the bienzymatic process

$$ee\% = \frac{R-S}{R+S} * 100$$

- Highest ee% for 0.44 mM H₂O₂ (87% for limonene and 91% for phellandrene)
- ee% decreases at lower H₂O₂ concentrations
- ee% for α-phellandrene is more affected by H₂O₂ concentration than limonene

Sample 1(bienzymatic system):

- 1.60 M octanoic acid
- 1.6 M α-phellandrene
- PBS pH 8
- 4.39% (v/v) lipase Aspergillus niger
- 2.81% (v/v) hydrolase Re-LEH
- $0.44 \text{ mM H}_{2}O_{2}$

Sample 2 (mono-enzymatic system):

- 1.60 M octanoic acid
- 1.6 M α-phellandrene
- PBS pH 8
- 4.39% (v/v) lipase Aspergillus niger
- $0.44 \text{ mM H}_{2}O_{2}$

Sample 3 (without biocatalyst):

- 1.60 M octanoic acid
- 1.6 M α-phellandrene
- PBS pH 8
- $0.44 \text{ mM H}_{2}O_{2}$

Efficiency of the bienzymatic system

Extraction:

24/

1 25°C

1000 rpm

(Thermoshoker)

1:1 volume ratio in ethyl acetate

Agitation at room temperature (30 min)

Acetylation:

- •100 µL sample
- •150 µL pyridine
- •66 µL acetic anhydride

24 h 25°C 1000 rpm (Thermoshaker)

GC-FID

12

Sample:	Bienzymatic	Mono-enzymatic	Without	
	system	system	biocatalyst	
p-menth-5ene-1,2-	1.25	1.41	0.88	
diol (mols/L)			\mathcal{C}	

The presence of at leas one enzyme results in higher diol amount

Lowest value

Efficiency of the bienzymatic system

Conversion:

- Highest: bienzymatic system (87%)
- Lowest: mono-enzymatic system (63%)

At this moment we do not have an explanation for the high conversion degree obtained in the system without biocatalysts, because we were unable to identify all products.

ee%:

- Highest: bienzymatic system (91%)
- Lowest: no enzyme system (44%)

p-cymene selectivity:

- Highest: bienzymatic system (17%)
- Lowest: no enzyme system (0%)

Sample 1(bienzymatic system)

np. (with hiocate. "

13

- We propose two methods of analysis for our samples, the GC-FID method that can be used for the determination of the enantioselectivity, and GC-MS method for substrate conversion.
- Ethyl acetate is more efficient compared with n-pentan as extraction solvent.
- The bienzymatic system is highly effective in converting both monoterpenoids (phellandrene and limonene) with promising enantioselectivity of the resulted products.
- Hydrogen peroxide concentration has a high influence on the conversion of phellandrene, compared to limonene. However, the highest concentration of hydrogen peroxide offered the best performance of the process.

Optimum reaction mixture:

- 1.6 M octanoic acid
- 1.6 M substrate
- 0.1 M PBS (pH 8)
- 4.39% v/v lipase from Aspergillus niger
- 2.81% v/v hydrolase Re-LEH
- $0.44 \text{ mM H}_2\text{O}_2$

Thank you for your attention!