

Faculty of Chemistry

Norwegian University of Science and Technology

Crystalline Porous Coordination Polymers with Catalytic & Gas Storage Applications

MSc Thesis – Report II

September 7, 2020

MSc Student : Mihai Bordeiaşu MSc Thesis Advisor : Assist Prof. Delia - Laura Popescu, PhD Master Program: Chemistry of Advanced Materials

Disclaimer: This was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).

✤ Atmospheric CO₂ fixation

Strategy of synthesis for Porous Coordination Polymers (PCPs)

Synthesis of Cu-based PCPs with Kagome layers

Structural and spectral characterization of obtained compounds

Thermal stability

Conclusions

K. Inoue et al., Dalton Trans., 43 (2014), 12974-12981

C.J. Kepert et al., Dalton Trans., 43 (2014), 14766-14771

Structural characterization

Copper (II)

Coordination number = 6

Geometry: distorted octahedron

Specific bond lengths (Å)				
Cu – O(1)	2.721(9)			
Cu – O(2)	1.959(7)			
Cu - O(3)	2.650(4)			
Cu - O(4)	1.968(8)			
Cu – N	1.998(5)			

Atoms	Angle (°)	Atoms	Angle (°)
O(1) - Cu - O(2)	53.1(3)	O(2) – Cu – N	90.0(1)
O(2) - Cu - O(3)	120.5(3)	O(4) - Cu - N	90.0(1)
O(3) - Cu - O(4)	54.9(2)	O(1) – Cu – N	89.2(1)
O(1) - Cu - O(4)	131.5(3)	O(3) – Cu – N	90.8(1)

Structural characterization

	Cry	uutu		
Compound	1	3	4	8
Crystal system	hexagonal	hexagonal	hexagonal	hexagonal
Space group	P-6	Р-б	P-6	P-6
a (Å)	9.739(7)	9.297(5)	9.275(3)	9.279(6)
b (Å)	9.739(7)	9.297(5)	9.275(3)	9.279(6)
c (Å)	13.367(1)	13.364(8)	13.371(4)	12.960(7)
α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	120	120	120	120
Volume (Å ³)	1098.1(1)	1000.4(1)	996.2(7)	966.6(1)

Crystallographic data

Structure of $\{[Cu_3(CO_3)_2(L)_3](Y)_2\}_n$

-anions omitted for clarity

Structural characterization

Spectral characterization

Conclusions

- A series of 3-D isostructural Cu(II)-based coordination polymers consisting of 2-D Cu(CO₃) Kagomé lattices were obtained.
- Different spectroscopic techniques, such as FTIR and UV-Vis in solid state, single crystal and powder X-ray diffractions, as well as thermal analysis were used to characterize the obtained compounds.
- The single crystal X-ray diffraction revealed, through direct fixation of atmospheric CO₂, the formation of Kagomé layers which are linked one to another via bypiridine-based ligands. The 2-D Cu(CO₃) Kagomé layers are stacked directly over each other to form hexagonal channels along the *c*-axis.
- The influence of various exo-bidentate diamine ligands on the distance between Kagomé layers was investigated.
- ★ The thermal decomposition shown a thermal stability up to approximately 300 °C in the case of $\{[Cu_3(CO_3)_2(bpe)_3](ClO_4)_2\}_n$ and $\{[Cu_3(CO_3)_2(bpe)_3](BF_4)_2\}_n$.

Thank you for your attention!

............