

GREENCAM for tomorrow

NTNU
Norwegian University of
Science and Technology

NP

Synthesis and Functionalisation of Nanoparticles

Sulalit Bandyopadhyay, Associate Professor,

NP

Department of Chemical Engineering, NTNU. sulalit.bandyopadhyay@ntnu.no

Disclaimer: This was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).

Norwegian University of Science and Technology

Reading Material

- Fabrication and Application of Nanomaterials, S. Bandyopadhyay, McGraw-Hill Education.
- Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2011). Advances in colloid and interface science, 163(2), 90–122.
- Bally, Florence, et al.(2012) *Polymer*, 53(22), 5045-5051.
- Saad, Walid S., and Robert K. Prud'homme. (2016) *Nano Today,* 11(2), 212-227.

Topics

Metallic NPs

- Synthesis Methods
 - Reduction of Metallic Precursors
 - Thermal Decomposition
 - Colloidal Templating
 - One pot methods
- Anisotropic NPs
- Functionalization of NPs
- Polymer-based NPs
 - Nanoprecipitation
 - Flash Nanoprecipitation
 - Precipitation Polymerization

Nanomaterials

Plasmonic and magnetic nanoparticles (spheres, cubes,

Library of NPs

Synthesis of Metallic NPs

Synthesis Approaches

Classical Nucleation Theory

- 1. Supersaturation
- 2. Nucleation
- 3. Crystal growth
- 4. Secondary growth

$$S = \frac{c}{c*}$$
$$\sigma = \frac{\Delta c}{c*} = S - 1$$

Lamer's Diagram

Crystallization

X

12

Metal precursor
Reducing agent
Passivating ligand

Why?

Properties of Metallic NPs

Functionality/application

Rule of Thumb

Redox potential ∞^{-1} Particle Size

Metal

Oxidation Reaction

Lithium Potassium Barium Calcium Sodium Magnesium Aluminum Zine Chromium Iron Cobalt Nickel Tin Lead Hydrogen Copper Silver Mercury Platinum Gold

 $Li \rightarrow Li^+ + e_ K \rightarrow K^+ + e^ Ba \rightarrow Ba^{2+} + 2e_{-}$ $Ca \rightarrow Ca^{2+} + 2e^{-}$ $Na \rightarrow Na^+ + e^ Mg \rightarrow Mg^{2+} + 2e$ - $AI \rightarrow AI^{3+} + 3e$ - $Zn \rightarrow Zn^{2+} + 2e$ - $Cr \rightarrow Cr^{3+} + 3e$ - $Fe \rightarrow Fe^{2+} + 2e^{-1}$ $C_0 \rightarrow C_0^{2+} + 2e_ N_i \rightarrow N_i^{2+} + 2e_{-}$ $Sn \rightarrow Sn^{2+} + 2e$ - $Pb \rightarrow Pb^{2+} + 2e$ - $H_2 \rightarrow 2H^+ + 2e_ Cu \rightarrow Cu^{2+} + 2e^{-}$ $Ag \rightarrow Ag^+ + e^ Hg \rightarrow Hg^{2+} + 2e_{-}$ $Pt \rightarrow Pt^{2+} + 2e$ -Au \rightarrow Au³⁺ + 3e-

Increase in Ease of Oxidation

Turkevich Reaction (Citrate Reduction of Chloride Precursor)

- Aqueous phase synthesis
- Citrate acts both as reducing agent and passivating ligand
- Most common synthesis method (commercially available)
- Synthesis temperature typically 100 °C with refluxing conditions

Turkevich, J. et al., *Discussions of the Faraday Society*, **1951**, 55-& Turkevich, J. et al., *J. Phys. Chem.*, **1953**, 57, 670-673 Turkevich, J. et al., *J. Colloid Sci.*, **1954**, 9, S26-S35

Reduction of Metallic Precursors in Solution Turkevich Reaction

- Readily available in sizes from 2-200 nm
- Wide array of surface functionalities available by simple ligand exchange reactions
- Citrate can be displaced by thiols, isothiocyanates and phosphines
- Susceptible to flocculation/aggregation by changes in solvent conditions

Brust Reaction (BH₄⁻ Reduction of Chloride Precursor)

Brust, M. et al., *Chem. Commun.*, **1994**, 801-802 Brust, M. et al., *Chem. Commun.*, **1995**, 1655-1656

Reduction of Metallic Precursors in Solution Brust Reaction

 $AuCl_{4^{-}(aq)} + N(C_{8}H_{17})_{4} + (C_{6}H_{5}Me) \rightarrow N(C_{8}H_{17})_{4} + AuCl_{4^{-}}(C_{6}H_{5}Me)$ (1) $mAuCl_{4^{-}}(C_{6}H_{5}Me) + nC_{12}H_{25}SH(C_{6}H_{5}Me) + 3 me^{-} \rightarrow 4mCl_{(aq)}^{-} + (Au_{m})(C_{12}H_{25}SH)_{n}(C_{6}H_{5}Me)$ (2)

5 nm

- Typically 1.5-8 nm particle size
- Very stable NPs.
- Access to a wide variety of surface functionalities through ligand exchange.
- Both polar and non-polar solvents.

Brust, M. et al., *Chem. Commun.*, **1994**, 801-802 Brust, M. et al., *Chem. Commun.*, **1995**, 1655-1656

Goia reaction (Iso-ascorbic Acid Reduction of Chloride Precursor)

Reduction of auric acid with iso-ascorbic acid;

 $2 \text{ HAuCl}_4 + 3 \text{ C}_6 \text{H}_8 \text{O}_6 \rightarrow 2 \text{ Au}^0 + 3 \text{ C}_6 \text{H}_6 \text{O}_6 + 8 \text{ HCl}$

Reduction of Metallic Precursors in Solution Goia Reaction

- Stabilizer-free meaning ascorbic acid acts as passivating ligand as for citrate
- Room temperature, very rapid nucleation and growth
- Aqueous phase synthesis
- Ascorbic acid can be displaced from surface by thiols etc.
- Particle size tunable through pH, reactant ratios, concentration
- 30-100 nm if "stabilizer free" system at room temperature
- \bullet 80 nm to 5 μm if prepared in the presence of gum arabic at very high Au conc.

Stabilizer-free Goia reaction standard together with Turkevich particles.

Andreescu, D., Sau, T.K. and Goia, D.V., J. Colloid Interface Sci., 2006, 742-751

Goia, D.V., Matijevic, E., Colloids and Surfaces A, 1999, 139-152

Reduction of Metallic Precursors in Solution Goia Reaction

- Reduction of silver nitrate by iso-ascorbic acid
- Slightly larger particles (40-70 nm)
- pH must be above 10

Co-Precipitation

- Metal salt precursors in aqueous solutions.
- Addition of a reducing agent (base).
- The products are generally insoluble species formed under conditions of high supersaturation.
- Nucleation is a key step, and a large number of small particles will be formed.
- Secondary processes, such as Ostwald ripening and aggregation, dramatically affect the size, morphology, and properties of the products.
- The supersaturation conditions necessary to induce precipitation are usually the result of a chemical reaction.

Co-Precipitation

Advantages

- Simple and rapid preparation
- No toxic intermediates
- No use of organic solvents
- Does not require precursor complexes
- Proceeds at low temperatures
- Scalable
- Reproducible

Disadvantages

- Particles with a broad size distribution.
- Trace impurities can also get precipiated with product.

Co-Precipitation

Courtesy: Anuvansh Sharma, PhD Candidate

2. Thermal Decomposition

- Preparation of Metallic Precursor.
- Thermal decomposition of Metallic Precursor.

Thermal Decomposition

Iron Oxide NPs

Preparation of Metallic Precursor

• $FeCl_3.6H_2O + Na-Oleate$

Solvents: Water + Hexane + Ethanol

- Mixture is refluxed at 70^oC for 4 hours with vigorous stirring. (Fig I)
- Red organic phase washed with water. (Fig II)
- Evaporation of solvent. (Fig III)

Courtesy: Anuvansh Sharma, PhD Candidate

Thermal Decomposition

Iron Oxide NPs

Courtesy: Anuvansh Sharma, PhD Candidate

3. Colloidal Templating: Reverse Micelles as Spherical Nanoreactors

Formation of reverse micelles

Surfactant with small polar head and acyl chains Surfactants join together in non-polar solvents... .. forming reverse micelles

Often microemulsions

Colloidal Templating

General principle: Exchange of aqueous cores

Reverse micelles subject to Brownian motion Collapsed reverse micelles and mixing of aqueous content Formation of two micelles, identical to the initial micelles

Colloidal Templating

Mixture of two micelle solutions, each containing one reactant

A + B

Reaction and formation of nanocrystals during exchange of aqueous cores

A + B = C

Addition of molecules of passivating agent to prevent the aggregation of nanocrystals

Passivating molecules react with the surface of the nanocrystals

Nanocrystals extracted from micelles by washing with ethanol, then redispersed in a given solvent

Colloidal Templating

Controlling the size of the reverse micelles controls the size of the nanoparticles, as shown here for silver nanocrystals

4. One-pot Synthesis Using Globular Proteins

HAuCl₄ + NaBH₄ (reducing agent) + Bovine Serum Albumin (BSA)

Au NPs embedded in the protein

One-Pot Synthesis Using Globular Proteins

Proposed mechanism for growth of AuNPs stabilized by BSA.

- 1. Increasing the pH to above 10 causes BSA to be negatively charged which induces electrostatic interactions with the gold ions.
- 2. Vis AuNCs that emit in the visible region of the EM spectrum start to form.
- 3. Depending on time and concentration of HAuCl₄, larger Near IR AuNCs.
- 4. AuNPs are formed via a shuffling of Near IR AuNCs.

McDonagh, B.H. et al., RSC Advances, 2015, 5, 101101-101109

Anisotropic NPs

Aspect Ratio

History of Au NRs

Localized Surface Plasmon Resonance (LSPR)

Okamoto et al., J. Mater. Chem., 2006,3920-3928

VS	
Larger extinction coefficient (ε)	Smaller extinction coefficient (ε)
Scatter more light at longitudinal plasmon λ	Scatter less light at longitudinal plasmon λ
Better performance in optical imaging	Improved efficiency in photothermal applications

Seeded Growth

Factors

 \circ Size and surface chemistry of the seed

Size increases, decrease in AR Surface charge effects dispersity of AR

Chain length of the directing agent
Length< CTAB, lower AR

- \circ Nature of the counterion
- Cl⁻ growth is inhibited

Ag-assisted Seeded Growth Synthesis

Growth Mechanism

Functionalization of NPs

Functionalization – Why?

- Ag and Au NPs are not stable in solutions without a surface layer of a passivating ligand
- This imparts an electrostatic and/or steric stabilization to the colloidal sol.

Approaches to Functionalization

1. Direct (in situ) Functionalization

- Done during synthesis
- Examples:
 - Turkevich Reaction
 - Brust Reaction

2. Post - Synthesis Functionalization

- Functionalization after synthesis
- Factors
 - Binding to or replacing the exisiting surface ligand
 - Intermolecular forces
 - No of attachment sites, thickness and density of surface layer
 - No. of different surface groups required

Approaches to Functionalization Post - Synthesis Functionalization

- Examples:
 - Non specific binding
 - Displacement
 - Layer by layer (LBL)
 - Protein binding
 - Grafting polymers, etc.

Reader's Digest Version:

- Huge library of NPs of different shapes and sizes can be synthesized using solution methods.
- Metallic Precursor + Reducing Agent + Passivating Ligand.
- Strength of the reducing agent controls particle size.
- Synthesis strategy dependent on:
 - Properties of NPs desired.
 - Simplicity of the process.
 - Further application downstream.
- Control of particle size supersaturation, nucleation, growth.