

NTNU Norwegian University of Science and Technology

Nanotechnology - introduction

Vegar Ottesen, PhD. vegar.ottesen@ntnu.no

September 28, 2020

Dept. of Chemical Engineering, NTNU

Disclaimer: This was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).

What is Nanotechnology?

There is plenty of room at the bottom

(of + molule 1=1.

1

2

if LIT

Nano and micro

Nanomaterials

Terms

$$SSA = \frac{A}{V\rho}$$
$$[SSA] = \frac{m^2}{g}$$

Surface!

$$SSA = \frac{A}{V\rho}$$
$$[SSA] = \frac{m^2}{g}$$

$$SSA = \frac{A}{V\rho}$$
$$[SSA] = \frac{m^2}{g}$$

Optical Properties

Why?

Physics!

(1)

Bandgap

$$E_{nano} = E_{g,bulk} + \frac{h^2 \pi^2}{2mr_{nano}^2}$$

(1)

Bandgap

$$E_{nano} = E_{g,bulk} + \frac{h^2 \pi^2}{2mr_{nano}^2}$$

Melting temperature

(1)

Bandgap

$$E_{nano} = E_{g,bulk} + \frac{h^2 \pi^2}{2mr_{nano}^2}$$

Melting temperature

Interactions with environment

vs. Bottom-Up

Production?

Sulalit Bandyopadhyay, Mat. Today, 2017

Nucleation and growth

Nucleation and growth Scanning Probe Microscopy (SPM)

Production?

Production?

Nucleation and growth SPM MBE Polymer origami

Rothemund, Nature, 2006

AEM tip Ink pattern Substrate

Smith et al, Nano Letters, 2003

Nucleation and growth SPM MBE Polymer origami Lithography Dip-pen, Soft lithography... Top-down Lithograhpy Photolithography, EBL, SCIL, NIL...

Top-down Lithograhpy Photolithography, EBL, SCIL, NIL... Forces Shear, impact

Top-down

Top-down Lithograhpy Photolithography, EBL, SCIL, NIL...

Forces

Shear, impact

Top-down Lithograhpy Photolithography, EBL, SCIL, NIL... Forces Shear, impact Partial dissolution

Acids, bases

Top-down

Characterization

- X-Ray Scattering (WAXS/SAXS)
- Neutron Scattering
- Nuclear Magnetic Resonance (NMR)

$d = \frac{\lambda}{2NA}, d > 0.25 \mu m$

Fluorescence

Microscopy

Image: Nikon

Fluorescence

Electron/Ion

Microscopy

Fluorescence

Electron/Ion

Scanning Probe

This is an actual picture of a molecule

Image credit: IBM Research – Zurich

 $1-3D \in \{1, 100\}$ nm

 $1-3D \in \{1, 100\}$ nm novel properties

 $1-3D \in \{1, 100\}$ nm novel properties Build from ground up Produce from larger whole $1-3D \in \{1, 100\}$ nm novel properties Build from ground up Produce from larger whole Demanding characterization