Nanotechnology - introduction

Vegar Ottesen, PhD.
vegar.ottesen@ntnu.no
September 28, 2020
Dept. of Chemical Engineering, NTNU

Disclaimer: This was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).

Welcome!

What is Nanotechnology?

$$
\begin{aligned}
& \mathrm{SSA}=\frac{\mathrm{A}}{\mathrm{~V} \rho} \\
& {[\mathrm{SSA}]=\frac{\mathrm{m}^{2}}{\mathrm{~g}}}
\end{aligned}
$$

$\mathrm{SSA}=\frac{\mathrm{A}}{\mathrm{V}_{\rho}}$
 $$
[\mathrm{SSA}]=\frac{\mathrm{m}^{2}}{\mathrm{~g}}
$$

$\mathrm{SSA}=\frac{\mathrm{A}}{\mathrm{V} \rho}$
 $$
[\mathrm{SSA}]=\frac{\mathrm{m}^{2}}{\mathrm{~g}}
$$

Bandgap

$$
\begin{equation*}
\mathrm{E}_{\mathrm{nano}}=\mathrm{E}_{\mathrm{g}, \mathrm{bulk}}+\frac{\mathrm{h}^{2} \pi^{2}}{2 \mathrm{mr}_{\text {nano }}^{2}} \tag{1}
\end{equation*}
$$

Why?

Bandgap

$$
\begin{equation*}
\mathrm{E}_{\text {nano }}=\mathrm{E}_{\mathrm{g}, \text { bulk }}+\frac{\mathrm{h}^{2} \pi^{2}}{2 \mathrm{mr}_{\text {nano }}^{2}} \tag{1}
\end{equation*}
$$

Melting temperature

Why?

Bandgap

$$
\begin{equation*}
\mathrm{E}_{\text {nano }}=\mathrm{E}_{\mathrm{g}, \mathrm{bulk}}+\frac{\mathrm{h}^{2} \pi^{2}}{2 \mathrm{mr}_{\text {nano }}^{2}} \tag{1}
\end{equation*}
$$

Melting temperature

Interactions with environment
Cassie-Baxter

Top-Down

VS.
Bottom-Up

Nucleation and growth

[^0]Nucleation and growth
Scanning Probe Microscopy (SPM)

Production?

Nucleation and growth SPM
Molecular Beam Epitaxy (MBE)

Nucleation and growth SPM

MBE
Polymer origami

Rothemund, Nature, 2006

Production?

Nucleation and growth SPM
MBE
Polymer origami Lithography
Dip-pen, Soft lithography...

Top-down
Lithograhpy
Photolithography, EBL, SCIL, NIL...

Top-down
Lithograhpy
Photolithography, EBL, SCIL, NIL...
Forces
Shear, impact

Top-down
Lithograhpy
Photolithography, EBL,
SCIL, NIL...

Forces
Shear, impact

Top-down
Lithograhpy
Photolithography, EBL, SCIL, NIL...
Forces
Shear, impact
Partial dissolution
Acids, bases

Characterization

Statistical

- X-Ray Scattering (WAXS/SAXS)
- Neutron Scattering
- Nuclear Magnetic Resonance (NMR)

$$
\mathrm{d}=\frac{\lambda}{2 \mathrm{NA}}, \mathrm{~d}>0.25 \mu \mathrm{~m}
$$

STED, PALM, STORM, SIM...

Increasing Z

This is an actual picture of a molecule
Image credit: IBM Research - Zurich
$1-3 \mathrm{D} \in\{1,100\} \mathrm{nm}$

$1-3 \mathrm{D} \in\{1,100\} \mathrm{nm}$

 novel properties
summary

$1-3 \mathrm{D} \in\{1,100\} \mathrm{nm}$ novel properties
Build from ground up
Produce from larger whole
$1-3 \mathrm{D} \in\{1,100\} \mathrm{nm}$ novel properties
Build from ground up
Produce from larger whole
Demanding characterization

[^0]: Sulalit Bandyopadhyay, Mat. Today, 2017

